In a nutshell: The finite-difference method for linear ordinary differential equations with constant coefficients

Given a second order linear ordinary differential equation with constant coefficients

$$
a_{2} u^{(2)}(x)+a_{1} u^{(1)}(x)+a_{0} u(x)=g(x)
$$

two spatial boundary points $[a, b]$ and two boundary values $u(a)=u_{a}$ and $u(b)=u_{b}$.
Parameters:
$n \quad$ The number of sub-intervals into which $[a, b]$ will be divided.

1. Set $h \leftarrow \frac{b-a}{n}$ and $x_{k} \leftarrow a+k h$ noting that $x_{n}=b$.
2. Set

$$
\begin{aligned}
& p \leftarrow 2 a_{2}-a_{1} h \\
& q \leftarrow-4 a_{2}+2 a_{0} h^{2} \\
& r \leftarrow 2 a_{2}+a_{1} h
\end{aligned}
$$

3. Create and solve the system of $n-1$ linear equations in $n-1$ unknowns

$$
\left(\begin{array}{ccccccc}
q & r & & & & & \\
p & q & r & & & & \\
& p & q & r & & & \\
& & p & q & r & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & p & q & r \\
& & & & & p & q
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{array}\right)=\left(\begin{array}{l}
2 g\left(x_{1}\right) h^{2}-p u_{a} \\
2 g\left(x_{2}\right) h^{2} \\
2 g\left(x_{3}\right) h^{2} \\
2 g\left(x_{4}\right) h^{2} \\
\vdots \\
2 g\left(x_{n-2}\right) h^{2} \\
2 g\left(x_{n-1}\right) h^{2}-r u_{b}
\end{array}\right)
$$

4. The approximation of $u\left(x_{k}\right)$ is u_{k} for $k=1, \ldots, n-1$ and $u\left(x_{0}\right)=u(a)=u_{a}$ and $u\left(x_{n}\right)=u(b)=u_{b}$
